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A Phase Transition in a 3D Growth-Disorder Model 
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It is shown that a model of growth disorder, describing the way in which substitutional disorder can be 
introduced into binary solid solutions at growth, exhibits a phase transition. In a particular case it is shown 
that the distribution in 2D sections of the crystal corresponds to the simple pair-interaction Ising model on a 
triangular lattice. 

Introduction 

In recent papers (Welberry & Galbraith 1973, 1975; 
Welberry 1977a,b) models of the way in which sub- 
stitutional disorder can be introduced into crystals at 
growth have been described. So far, however, these 
models have merely enabled distributions of binary 
variables (representing two molecular species) to be 
produced in two dimensions (2D) from given sets of 
somewhat arbitrary 'growth probabilities'. Our present 
aim is to put this work on a more realistic footing by 
extending the models to three dimensions (3D) and in 
addition to relate the 'growth probabilities' more 
directly to the forces involved when the molecular 
species interact at the crystal surface. 

It is important at the outset to emphasize the dis- 
tinction between the disorder produced by the type of 
growth process described here and a more general type 
of disorder which we shall refer to as dynamic disorder. 
In the latter we imagine the crystal to consist of mole- 
cules of different species which can rearrange them- 
selves at temperatures below the melting point to 
achieve a minimum free-energy configuration, while we 
imagine growth disorder to arise in situations where a 
molecule once embedded in the crystal surface is sub- 
ject to energy barriers sufficiently high that the 
possibility of subsequent rearrangement may be neg- 

lected. While the dynamic-disorder situation involves 
energy equilibrium over the whole 3D crystal, the 
growth-disorder process only involves equilibrium 
within the surface layer. A model that has been used 
extensively for describing systems involving energy 
equilibrium over the whole crystal is the nearest- 
neighbour Ising model for which the solution in 2D is 
known (Onsager, 1944) and for which a considerable 
amount of information in 3D is available from approxi- 
mate methods (see Domb, 1974). 

It has been shown (Enting, 1977a; Welberry, 1977a) 
that the 2D growth-disorder models previously 
described are equivalent to more general 2D Ising 
models on which restrictions have been imposed on the 
values of the parameters in the energy function 
(Hamiltonian). It has become apparent that these 
restrictions remove from the particular 2D Ising model 
just that character of the model essential for the occur- 
rence of a phase transition at a finite temperature. In 
fact it appears that 2D growth-disorder models give 
rise to lattice distributions that are little more than 
compatible I D distributions in different directions (see 
Welberry, 1977a: Enting, 1977b). In extending the 
growth-disorder models to three dimensions it is of 
prime interest whether the character of the disorder 
produced by these models is sufficiently removed from 
that of the 3D Ising model that a phase transition 
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does not occur. The present paper is a preliminary 
report of our investigation of a simple 3D growth- 
disorder model which does display a phase transition. 

The model 

The model we consider is the simplest 3D model in 
which the probability that the (0,1) random variable 
xt.j, k, which represents one or other molecular species 
and which is associated with the i,j, k th  point of a 
simple cubic lattice, is dependent only on its immediate 
predecessors in the three crystal directions according to 
the equation 

P ( x i j . k  = I/xi..i,k- ~' XC.i- , .k'Xi - ~..i.k) 

= a + f l(xi . .~,  k -  ~ + Xi ,  i -  ,, k + X i -  , , j ,  k) 

+ Y(Xi, i k -  I X i , j  - l,k + Xi, . j -  l , k X i  - I , j ,k 

+ X i - I , j ,  kXi .  j , k - 1 )  

-+- (~(Xij,  k -  l X i j ,  - 1,kXi - i j , k  )" (1) 

This form of the model [c.f. the 2D models in Welberry 
& Galbraith (1973, 1975), Welberry (1977a,b)l already 
has equivalence of the three crystal directions built in 
and for the present purposes we further restrict (1) to 
correspond only to distributions which are invariant 
to the interchange of 0 and 1 (equivalent to 'zero field' 
in Ising-model terms). This leaves a two-parameter 
model for which we conveniently define two transition 
probabilities: 

a = P(I /111)  = P(O/O00) = a+ 3,6' + 3y + 6 = 1 - a  

b = P ( 1 / 0 1 1 ) = P ( 0 / 1 0 0 ) =  a + 2 f l + y =  l - - f l - a .  

It may be shown in an analogous way to the methods 
used by Enting (1977a) for the two-dimensional models 
that this growth-disorder model is equivalent to a re- 
stricted subset of an Ising model with an energy 
function (Hamiltonian) given in terms of the usual spin 
variables Cri. i.k (= +_ l) by 

E ( G )  = - -  Z Oi, j, k l J ( ( T i - i , j , k  + {7i,./-1,k + Cli , .Lk-l)  
illl 

sties 

+ K(°i- l,i,k- I + Oi- Ij+ l,k + Gij,k- I) 

+ L(ai- l , . / ,kOi, . / -I ,k  ai,.i,k-1) l, (2) 

i.e. a 3D Ising model with pair interactions between 
points within a trigonal layer, pair interactions between 
points in adjacent layers, and a four-point interaction 
only acting on the set of trigonal pyramids which point 
in the growth direction. Furthermore, following the 
methods used in 2D by Enting (1977a) the values for 

J, K and L are expressible in terms of the growth 
transition probabilities: 

b(1 -b)  
J = ~ l n - -  

a(1 - a) 

ab 
K = ~ l n  

(1 - a )  ( l - b )  

and are thus subject to a constraint in an analogous 
fashion to the findings in 2D. 

Since the Ising model (2) is not soluble in general we 
proceed by noting that in the absen6:e of the third term 
the 3D model (2) is symmetric to reflection in the (111) 
plane and the interactions K can be mapped onto a 
honeycomb lattice formed by two adjacent trigonal 
layers. Since J and - K  are related by the star-triangle 
transformation (see Syozi, 1972), the within-layer inter- 
actions J are exactly cancelled by the between-layer 
interactions K connecting the double layer to those 
immediately above and below. That is, when L is zero 
2D sections of the 3D growth model are equivalent to 
the simple pair-interaction Ising model on the triangular 
lattice (one layer) or on the honeycomb lattice (two 
layers). This is a well documented model which has a 
transition at K = +½ cosh -1 2 = 0.6585 or (since L = 0 
gives a/(1 - a) = [b/(1 - b)] 3) at a = 0.9811, b = 
0.7887 (ferromagnetic) or a = 0.0189, b = 0.2113 
(antiferromagnetic). 
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Fig. 1. The concentration of l's O(n) in successive growth layers 
of a 3D crystal in which the growth probabilities have been 
constrained to give trigonal layers corresponding to the simple 
pair-interaction Ising model on a triangular lattice. The value of 
b = P(I/110) is given on each curve. The critical value of b is 
0-7887. 
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We have performed computer simulations to confirm 
these findings for the particular series a / ( 1  - a)  = 

[b/(l - b)] a and to investigate whether a transition 
occurs in other regions of the ab  plane. Our simulations 
took the following form. Growth was initiated from a 
256 × 256 random trigonal layer with a specified con- 
centration of l 's  (0.75 in Fig. 1). Subsequent layers 
were added so that points in the new layer occurred 
only above one of the types of triangle of the preceding 
layer so forming a simple cubic lattice. Points were 
added using equation (1) together with a standard 
pseudo-random number routine and cyclic boundary 
conditions were imposed on each layer so that the 
dimension of successive layers did not diminish• A plot 
of concentration of l ' s  as a function of layer number 
(see Fig. I) indicates the critical behaviour of the model. 
It is evident from Fig. 1 that a value of b ~_ 0.79 repre- 
sents the transition between simulations which tend to 
converge on a value close to 0 or I (1 in this case), 
corresponding in magnetic terms to regions of 'spon- 
taneous magnetization'• We have also performed simu- 
lations when L takes non-zero positive and negative 
values of ~ln(10) and have found similar behaviour 
along each curve with transitions occurring at approxi- 
mately b = 0.72, a = 0.99 and b = 0.85, a = 0.95 
respectively. Thus while the presence of the four-point 
interaction L prevents a solution of the model away 
from the line a / ( l  - a) = [b/(1 - b)] 3 the critical 
behaviour appears to be maintained. Fig. 2 shows 

realizations of the distributions reached after 500 layers 
for the examples given in Fig. 1. The example when 
b = 0.78 has still not attained an equilibrium distri- 
bution, but nevertheless the sequence of pictures repre- 
senting only a comparatively small range of proba- 
bilities displays the sudden advent of 'spontaneous 
magnetization'• 

Conclusion 

We have found that in a special case a 3D growth- 
disorder model has properties in each of its 2D growth 
layers identical to those of the 2D nearest-neighbour 
lsing model on a triangular lattice, which is known to 
exhibit a phase transition• Our results also indicate that 
the growth-disorder model exhibits a similar transition 
in more general cases which do not correspond to 
known lsing solutions• The results are consistent with 
a view that while 2D growth models produce lattice dis- 
tribution with I D lsing-like properties, 3D growth 
models produce distributions with 2D lsing-like 
properties. In this respect it seems that the loss of 
dimensionality is due to the fact that one of the spatial 
dimensions plays a role similar to that of time in the 
normal evolution of an Ising model realization• At the 
present time it is not clear whether this alternative 
approach to obtaining realizations of lsing models is of 
any advantage. However, the present work, simply as 
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Fig. 2. Rea l i za t ions  o f  the d is t r ibut ion  r e a c h e d  af ter  500  layers  for  the e x a m p l e s  o f  Fig. 1. E a c h  e x a m p l e  con ta ins  256 × 256 latt ice points.  
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an alternative way of looking at an old problem, has 
already lead Enting (1977e) to  derive the relationship 
between the single- and triple-spin expectations for the 
Ising model on the honeycomb and triangular lattices 
far more simply than the existing derivation of Baxter 
(1975). 

In terms of crystal growth the present findings are 
significant as they indicate that above a critical temp- 
erature we would expect binary systems to crystallize 
as disordered mixed crystals but below this temperature 
to tend to crystallize separately. In addition, since it is 
generally accepted that the critical temperature is 
dependent primarily on dimensionality (see Domb, 
1974), the critical temperature for the introduction of 
disorder at growth would be expected to be lower than 
for the same system were it able to rearrange its con- 
stituent molecules to achieve energy minimization. 

The authors have benefited from numerous dis- 
cussions with Dr I. G. Enting. 
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The Ordered State of  In3Te 4 
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The composition of In3Te 4 has been established as a single-phase material. Single crystals of this material 
have been prepared and its structure has been identified as tetragonal with lattice parameters a o = b o = 
6.173 and c o = 12.438 A. The stability of the structure has also been investigated. 

Introduction 

In a recent study on the ordered phases of In2Te 3 
(Karakostas & Economou, 1975) it was postulated that 
the high-temperature modification of the cubic phase 
on cooling separates into hypo- and hyperstoichio- 
metric phases, with different long-range-order arrange- 
ments of the vacancies. This segregation occurs by the 
material passing through a transition state (Bleris, 
Karakostas,  Stoemenos & Economou, 1976) where a 
short-order arrangement prevails. 

The postulated hyperstoichiometric a-In2Te3-I, as 

* On leave at SCK-CEN, Mol, Belgium. 
-t" Present address: Physics Department, University of Illinois, 

Chicago, Illinois, USA. 

it was called by Karakostas & Economou (1975), 
should have a structure within the range of stoichio- 
metry of the compound In3Te 4. From the electron 
diffraction patterns it was concluded that the phase 
should have a one-dimensional long-period superlattice 
with a tetragonal unit cell. The proposed structure for 
the In sublattice of a-In2Te3-I is given in Fig. l(a), 
together with the lattice corresponding to the trans- 
mission electron diffraction patterns, with cubic cell 
indexing (Fig. I b) and transformed to a tetragonal cell 
indexing (Fig. le). 

Since the structure proposed for a-In2Te3-I and 
therefore assumed for In3Te 4 was based on evidence 
which was not direct, we considered it important to 
investigate the In-Te system in the vicinity of the 3 : 4  
composition range to confirm the existence of the 
tetragonal phase as a single independent stable one. 


